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Abstract⎯The paper is focused on the idea to demonstrate the advantages of deep learning approaches
over ordinary shallow neural network on their comparative applications to image classifying from such
popular benchmark databases as FERET and MNIST. An autoassociative neural network is used as a
standalone program realized the nonlinear principal component analysis for prior extracting the most
informative features of input data for neural networks to be compared further as classifiers. A special
study of the optimal choice of activation function and the normalization transformation of input data
allows to improve efficiency of the autoassociative program. One more study devoted to denoising
properties of this program demonstrates its high efficiency even on noisy data. Three types of neural
networks are compared: feed-forward neural net with one hidden layer, deep network with several hid-
den layers and deep belief network with several pretraining layers realized restricted Boltzmann
machine. The number of hidden layer and the number of hidden neurons in them were chosen by
cross-validation procedure to keep balance between number of layers and hidden neurons and classi-
fication efficiency. Results of our comparative study demonstrate the undoubted advantage of deep
networks, as well as denoising power of autoencoders. In our work we use both multiprocessor graphic
card and cloud services to speed up our calculations. The paper is oriented to specialists in concrete
fields of scientific or experimental applications, who have already some knowledge about artificial
neural networks, probability theory and numerical methods.
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1. INTRODUCTION
The new challenging era of scientific data management in the coming decade of “Big Data” requires a

new paradigm named data intensive science to deal with Exabyte data scale in many modern social, eco-
nomic and scientific areas. Experimental High Energy and Nuclear Physics, in particular, demands now
not only the giant complexes for distributed computing and corresponding grid-cloud internet services,
but what is the most important in context of this paper, – Machine Learning approaches to search for
unevident regularities in data for getting the most probable forecast of phenomena under study. Machine
learning algorithms use input data to detect patterns in data and adjust program actions accordingly.

Artificial neural networks with their ability for learning and self-learning are effective machine learning
tools, so physicists accumulated a quite solid experience in various neural net applications in many high
energy and nuclear physics experiments for the recognition of charged particle tracks, Cherenkov rings,
physical hypotheses testing, and image processing [1–4]. Two types of neural nets were mainly applied, –
multi-level perceptrons (MLP) and recurrent neural nets of the Hopfied type.

There is still the handy MLP realization with the error back-propagation algorithm for its training in
the Toolkit for Multivariate Data Analysis with ROOT [5]. Besides, namely physicists have a privilege to
generate training samples of any arbitrary needed length by Monte Carlo simulations on the basis of some
well-known physical theory and use to apply MLP intensively [6].

At the same time the first neural net applications to the particle track reconstruction problems in 1988
[7, 8] brought physicists to the world of dynamical binary neuron systems with a symmetric weight matrix
and the network energy function which minima correspond to equilibrium points of the system. Using a
statistical treatment of neuron states known as the “mean field theory” [9], it became possible to induce
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regulated amounts of thermal noise with the noise temperature T into the evolving neural net rule so that
it escapes the local minima. Larger temperatures correspond to larger amount of noise, and the evolving
procedures benefit from various rules of the simulated annealing scheme [10], where the temperature
decreases as the network approaches its global minimum of the energy function. Due to the f lexibility of
the energy function definition it was possible to solve the track recognition problem by constructing the
energy function in a form which causes the Hopfield network evolution to converge to the state where neu-
rons corresponded to smooth tracks are the most probable [9, 11].

Nevertheless, at the new “Big Data” reality both neural net types quite rare could show their needed
efficiency due to many shortcomings. The shallow architecture with 1–2 hidden layers is typical, at pres-
ent, for feed-forward neural nets with the back-propagation training algorithm [12]. Since problems to be
solved are now getting more and more complicated, the neural net architecture needs to become deeper
by adding more hidden layers for better parametrization and more adequate problem modelling. However
in most cases deepening, i.e. the fast grow of inter-neuron links, faces the problem known as the “Curse
of dimensionality”, which leads to overfitting or to sticking the minimized error function of the back prop-
agation in poor local optima. As it was noted in [13, 14], Hopfield networks could not also be effective
enough in cases of noisy and dense events.

At these circumstances it is just the time to remember about series of researches devoted to the deep
learning concepts published during the last decade [15–18], which authors dealing with neural networks
were inspired by the knowledge about the deep hierarchical structure of mammals visual cortex [19–21].

There were two ways of making deeper a neural network hierarchy: either just adds more hidden layers
to multilayer perceptron with its supervised learning paradigm, or to change this paradigm by including to
neural network a hierarchy of additional layers, but with different, unsupervised learning.

The first way was well described in [17, 22] and mostly used the state of art approach to overcome dif-
ficulties of training deep feedforward neural networks by various tricks to optimize network parameters.

The second way is more similar to the bio-analog of the animal visual cortex and was proposed by
G. Hinton [23] on the basis of combining several stacked layers of recurrent neural net of the Bolzmann
machine type realizing unsupervised representations of input data with the last supervised layer complet-
ing a classification task. At the end the whole network is fine-tuned by providing supervised data to it. This
type of deep networks was named deep belief networks where the word “belief” means not “faith”, but
“confidence” referring one to stochastic neural networks and probability distribution of their neurons.
These layers are restricted Boltzmann machine (RBM) [15, 24, 25] that can learn themselves a probability
distribution over its set of inputs. The evolution of Restricted Boltzmann machine layers is realized by
Markov chain Monte Carlo method [26], although its convergence needed to obtain mean values of
wanted parameters is always too long to be practical. However, Hinton’s idea of so-called “contrastive
divergence” function helps to speed up the convergence [27].

One quite significant approach is to build out a deep neural nets of layers of autoencoders. Autoen-
coder algorithms consist of training a neural network to produce an output that is identical to the input,
but having fewer nodes in the hidden layer than in the input forming a “bottle neck”. In this case one has
built a tool for compressing data to a smaller number of the most informative features [28, 29].

Alternatively, you could allow for a large number of hidden units, but require that, for a given input,
most of the hidden neurons only produce a very small activation. Nevertheless, if we impose a sparsity
constraint on the hidden neurons neglecting weak ones with very small activation, then an autoencoder
will discover important structures in the data, even if the number of hidden units is large. Such a process
of unsupervised pre-training is named sparsifying. As it is shown in [30], a sparsified representation before
the classification task should greatly reduce the learning problem because sparsity enforces a hidden layer
to learn a code dictionary that minimizes reconstruction error while restricting the number of code-words
required for reconstruction.

There are other meaningful properties of autoencoders. Stacking autoencoders, when each layer of the
network learns an encoding of the layer below creates a network with unsupervised learning hierarchical
features [31, 32]. Training stacked layers allows a deep network to learn a good representation in a greedy
layerwise fashion instead of trying to train the whole network from a random initialization of weights.

Autoencoder stacking purposes two objects: one concerns to denoising autoencoders proposed in [33]
for unsupervised learning based on the idea of making the initial learned representations robust to partial
corruption of the input pattern. The robustness to partially destroyed inputs should yield almost the same
representation. This approach can be used to train denoising autoencoders to be stacked to initialize deep
architectures.
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The second object of autoencoder stacking relates to convolutional autoencoders intended to deal with
2D image structure unlike fully connected and denoising autoencoders [34]. It allows to discover localized
features that repeat themselves all over the input. The convolutional network architecture consists of three
basic building blocks to be stacked: the convolutional layer, the max-pooling layer and the classification
layer [35]. At present convolutional networks are among the most successful models for supervised image
classification [36].

There are many other types of deep learning neural nets with quite different structures such as Long
Short Term Memory [37, 38], Gated Recurrent Unit networks [39], Reinforcement learning networks
[40, 41]. The most intriguing results were shown recently by Microsoft deep residual networks with hun-
dreds of layers and millions of parameters [42, 43]. During the last decade these novel ultra-deep networks
have shown remarkable results not only in image classification, but also in regression, dimensionality
reduction, modeling motions, information retrieval, object segmentation, natural language processing
and many others.

However in this paper we are not going to survey deep learning networks. Our goal is focused on a more
practical idea to demonstrate the advantages of deep learning approaches over ordinary shallow neural
network on their comparative applications to image classifying from the such popular benchmark data-
bases as FERET [44] and MNIST [45].

At the first step of preparing images to input to neural network we use autoassociative or autoencoders
to extract the most informative features of input data. According to M. Kramer [28], three hidden layers
of an autoencoder with a “bottle neck” in the middle allows to accomplish the nonlinear principal com-
ponent analysis which realize more complex mapping functions than principal component analysis
removing not only linear, but also non-linear correlations.

Three types of neural networks are compared: feed-forward neural net with one hidden layer, deep
neural net with several hidden layers and deep belief neural net with several pretraining RBM layers. The
number of hidden layers and the number of hidden neurons in them were chosen by cross-validation pro-
cedure [46] to keep balance between number of layers and hidden neurons and classification efficiency.

It is worth mentioning here that one of the main obstacles of applying deep learning methods is their
slowness. To solve real big data problems they demand quite essential computing resources. It leads to the
challenge of evolving multicore computational systems and multiprocessor graphic cards or GPUs to
speed up the convergence of deep networks. Now we can see a real deep learning breakthrough because,
for instance, GPUs allow the fast matrix and vector multiplications required as for convincing virtual real-
ities, as for neural net training, where they can speed up learning by a factor of 50 and more [38]. Therefore
in our work we use both GPU and cloud services to speed up our calculations.

This paper is oriented to specialists in concrete fields of scientific or experimental applications, who
have already some knowledge about artificial neural networks, probability theory and numerical methods.

2. METHODS AND DATABASES
The intrinsic dimension of the data set is the least dimension that describes a data set without signifi-

cant loss of feature. Biometric datasets such as face images are typical examples of high-dimensional data-
sets with low intrinsic dimensionality. The dimensionality of a multicomponent image vector to be input
to a neural net is redundant due to correlations and non-linear dependencies between pixels forming this
image and, therefore, is much greater than its intrinsic dimensionality. The image dimensionality reduc-
tion to its intrinsic dimensions simplifies considerably any image processing. It is especially important for
deep neural net applications where the number of inter-neuronal links grows drastically with the dimen-
sion of input vector what makes the training process too long and leads to the bad convergence of the neu-
ral net cost function. However traditional linear estimators of intrinsic dimensions, such as principal com-
ponent analysis can identify only linear correlations while reduction of non-linear dependencies with
minimal loss of information could be also important.

2.1. Nonlinear Principal Component Analysis by Autoencoders

We propose to apply an autoencoder with unsupervised learning for data compression to a smaller
number of the most informative features by realizing the nonlinear principal component analysis
(NLPCA) [28]. Besides we refuse the popular idea of including AE into the hierarchy of a learning neural
net in a stacked manner [34] and prefer to use an autoencoder as a standalone program due to the follow-
ing reasons:
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• it gives us the same set of compressed data as
an input vector for three neural networks to be
compared further as classifiers;

• autoencoder realized as an autoassociative
neural network needs to optimize its structure and
tune parameters of its activation function and a
procedure of input data normalization.

We use M. Kramer’s scheme of NLPCA net-
work where the non-linearity is obtained by the
special architecture with three hidden layers
including the bottle neck layer in the middle. This
scheme is depicted in Fig. 1 from [28].

Bottle-neck layer  extracts -principal com-
ponents. Training is performed with sigmoidal
activations by self-supervised backpropagation
minimizing the sum of squared errors

(1)

However we accomplish a special study of
applicability sigmoidal activations and optimal
choice of the normalization transformation of
input data (see expounding and results in section
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3.1 below). Then we modified Kramer’s scheme considerably by replacing sigmoidal activations on to
Leaky Rectified Linear activations [47] with a specific input normalization.

One more study devoted to denoising properties of our autoencoder algorithm demonstrates its high
efficiency even on noisy data (see details in section 6 below).

2.2. Deep Belief Network

Deep belief networks (DBN) were proposed as probabilistic generative models that are composed of
multiple layers of stochastic, latent variables [25]. The scheme of the DBN from [48] is presented on the
Fig. 2. DBN runs a pretraining procedure, using latent restricted Boltzmann machine (RBM) layers (see
below). Discriminative fine-tuning can be performed by adding a final layer of variables that represent the
desired outputs and backpropagating error derivatives.

2.2.1. Restricted Boltzmann machines and contrastive divergence. Boltzmann machine is a type of sto-
chastic recurrent neural network and Markov random field, for which the bilinear energy function is
determined as follows [15]:

Fig. 1 [28]. Autoaccosiative neural network for simulta-
neous determination of f nonlinear factors, σ indicates
sigmoidal nodes, * indicates sigmoidal or linear nodes.
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Fig. 2 [48]. Deep Belief Network model.

RBM

1. Train RBM for x

x

h1

RBM

2. Train RBM for h1

x

h1

h2

RBM

3. Train RBM for h2 and y

x

y

h1

h2

h3



OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 26  No. 4  2017

SHALLOW AND DEEP LEARNING FOR IMAGE CLASSIFICATION 225

where ,  are states of visible unit i and hidden unit j, ,  are they biases and  is their synoptic
weight. RBMs further restrict BMs to those states, but without visible-visible and hidden-hidden connec-
tions. The comparative schemes of BM and RBM architectures are presented in Fig. 3.

The RBM network assigns a probability to every possible pair of a visible and a hidden vector via the
energy function:

(2)

where the partition function, Z, is given by summing over all possible pairs of visible and hidden vectors:

The probability of network assigning a visible vector, v, is given by summing over all possible hidden
vectors:

The probability that the network assigns to a training image can be derived by adjusting the weights and
biases to lower the energy of a given image and to raise the energy of other images, especially those that
have low energies and therefore make a big contribution to the partition function. The derivative of the log
probability of a training vector (2):

where the angle brackets are used to denote expectations under the distribution specified by the subscript
that follows. This leads to a very simple learning rule for performing stochastic steepest descent in the log
probability of the training data, where η is a learning rate:

Because there are no direct connections between RBM hidden units, it is very easy to get an unbiased
sample of . Given a randomly selected training image, v, the binary state, , of each hidden unit
is set to 1 with probability (3). It is also quite easy to get an unbiased sample of the state of a visible unit,
given a hidden vector (4).
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Fig. 3. Comparison of the BM and RBM models architectures.
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(3)

(4)

where 

Getting an unbiased sample of , however,
is much more difficult. It can be done by starting at any
random state of the visible units and performing alternat-
ing Gibbs sampling for a very long time [25].The scheme
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of this procedure called Markov Chain Monte Carlo (MCMC) [26] is shown in Fig. 4.
Unfortunately, the MCMC convergence needed to obtain mean values of wanted parameters is always

too long to be practical; however, G. Hinton found a “trick” to speed up sampling process, which works
surprisingly well.

He showed, if the learning approximately minimizes a different function called “contrastive diver-
gence”, then Markov chain can run only for just one step [27].

Contrastive divergence learning algorithm is as follows:
⎯since, we eventually want , we initialize the Markov chain with some of training

examples;
⎯Contrastive divergence learning does not wait for the whole chain to converge. Samples are obtained

after only k-steps of Gibbs sampling. In practice, k = 1 is enough.
After training one RBM layer, the activities of its hidden units can be treated as data for training a

higher-level RBM. This method of stacking RBMs makes it possible to train many layers of hidden units
efficiently and it is one of the most common deep learning strategies. As each new layer is added, the over-
all generative model gets better.

During the last decade deep belief family networks have been applied with success not only in classifi-
cation, but also in regression, dimensionality reduction, modeling motions, information retrieval, object
segmentation, natural language processing and many others [49].

2.3. Datasets
As databases for training and testing networks, two well-known datasets are used:
⎯MNIST handwritten digit database;
⎯FERET face database.
MNIST handwritten digits database [45] includes 70000 training images, 10000 validation images (for

hyper-parameter selection), and 10000 test images, each showing a 28 × 28 grey-scale pixel image of one
of the 10 digits. In Fig. 5 a small sample of MNIST handwritten digit database is shown.

The Facial Recognition Technology (FERET) database includes of 400 people’s faces photos (40 peo-
ple to 10 photos for each) taken from different angles, which format is 55 × 45 pixels [44]. A fragment of
FERET images is presented in Fig. 6.

3. OPTIMAL CHOICE OF ACTIVATION FUNCTION AND INPUT NORMALIZATION
Learning of many hidden layers in the artificial neural network causes the famous hampering problem

named “vanishing and exploding gradients” because there is an intrinsic instability associated to learning
by gradient descent in deep, many-layer neural networks. [22]. There are several recommendations how
to avoid such problems [35, 22, 50]. Keeping them in mind, we made a study of the optimal choice of acti-
vation functions and normalization transformations of input data.

The important note should be made about optimality criteria used to choose network parameters. It is
reasonable to use for classifying networks such criteria as classification efficiency and calculation speed,
but for the standalone autoencoder which is used as the data compressor for all three classifiers we have

( ) ( )trainp p≈v v

Fig. 4. Sampling in an RBM.
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to measure the quality of data compression by backpropagation error, i.e. the sum of squares of differences
between input and output images.

3.1. Activation Functions and Normalizing Features for the Autoencoder

In this section, we introduce seven choice strategies using 5 types of activation functions, including sig-
moid, hyperbolic tangent (Tanh), softplus, rectified linear (ReLU), leaky rectified linear (LReLU). (see
their illustrations in Fig. 7) and 5 variants of dataset normalizing with MinMax scale and “mean face”
subtraction.

3.1.1. Activation functions. 
Sigmoid. Commonly used sigmoid activation formula is as follows:

( ) 1 .
1 xf x

e−=
+

Fig. 5. MNIST handwritten database sample.

Fig. 6. FERET face database sample.
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Hyperbolic Tangent. The tanh activation is also very popular

(5)

Rectified Linear Unit (ReLU). Rectified Linear is first used in Restricted Boltzmann machines [51].

(6)

Softplus. Softplus is the smooth (ReLU) approximation proposed by [52]

(7)

Leaky Rectified Linear Unit (LReLU). Leaky ReLU activation is first introduced in acoustic model
[Maas et al., 2013]. In this paper we performed LReLU following to [47]:

(8)

where  is a fixed parameter in range . In this work we set this parameter equal to  for the
MNIST dataset. The optimal choice of parameter  for the FERET face database was obtained by the
search of loss function minimum as it is shown in Fig. 8. We provide  in case of faces.
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Fig. 7. Sigmoid, Tanh, ReLU, Softplus and LReLU.
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Nonlinearities of such activation functions, as tanh and sigmoid, are used very often in neural net-
works, but in practice ReLU activation performs with the same efficiency or even better, but its hard sat-
uration below the threshold is not suited for the reconstruction units.

3.1.2. Importance of normalizing the input. It worth to note, that all input data should be normalized to
obtain faster convergence [35] and to lie within the activation range. We use the MinMax normalization
technique because it, according to our trials, produced the best result with the highest accuracy, least com-
plexity and shortest learning speed, better than known Z-score standardization [53].

The formula of MinMax normalization is as follows:

The other thing that we tried is subtracting mean data value (“mean face”, further) from each sample.
In Fig. 9 one can see the “mean faces” of two images from our databases.

Besides of studying activations, we experiment with several strategies of various normalizations to pre-
vent zero reconstruction in place of non-zero target:

1. Use a softplus activation function (7) for the last reconstruction layer, along with a quadratic cost (1)
[54].

2. Apply hyperbolic tangent (5) or sigmoid nonlinearities in contrast to softplus (7).
3. Use a rectifier activation function for the reconstruction layer, along with quadratic cost.
4. Use leaky ReLU activation (8) instead of original rectifier linear units (6).

min

max min
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−

Fig. 8. Choosing the optimal Leaky ReLU parameter . The marked point illustrates the better .
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Fig. 9. “Mean faces”. On the left side there is a mean value of MNIST dataset, and the right image is FERET mean value.
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Consider this, we have 7 options of activations functions: Sigmoid, Tanh, ReLU+Tanh, ReLU+Sig-
moid, ReLU+Softplus, ReLU and LReLU, where “+” means that we apply different nonlinearity to the
reconstruction layer, along with general squared-error loss. Additionally we have to consider 5 normaliza-
tion options:

(1) scale (data – “mean face”) from –1 to 1;
(2) scale (data – “mean face”) from 0 to 1;
(3) scale (data) from 0 to 1;
(4) scale (data) from –1 to 1;
(5) (scale (data) from 0 to 1) – “mean face”.
It should be noted, that the second item and the last item are not the same, because, for example, if we

rescaled data in range  with mean equals  and then subtract mean value from each sample, the new
range will be . Also items one and forth are not similar too, because the fourth point ignores the
“mean face” subtraction.

To find the best option between so many combinations of feature normalization and activation we
define the loss boundary for each dataset, i.e. such a value of the sum of squared errors on which we obtain
the highest efficiency. We set these values to 60 and 5000 for the FERET and MNIST databases respec-
tively. Then we check the speed of the model convergence and plot the horizontal bar, as it is depicted in
Fig. 10.

Thus, from Fig. 10 is follows the best choice for FERET data is obtained as LReLU activation and nor-
malization by scale (0, 1) – mean face, for MNIST data we obtain the same normalization, while two acti-
vations LReLU and Tanh give similar results.

3.1.3. Tied weights and stochastic gradient to solve the convergence problem. Autoassociative neural
network that were used for determination of nonlinear factors has three hidden layers. As a result, network
training with the backpropagation algorithm suffers also from a bad convergence of the common gradient
descent used in backpropagation. An example of the autoencoder output is shown in Fig. 11 where the loss
function has likely stuck in a local minimum.

Two methods were used to overcome this issue: tied weights and stochastic gradient descent with so-
called Adam optimization [55].
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3.1.4. Tied weights. The tied weights approach could be explained on an easy example of feed forward
neural network with one hidden layer and regular weights. Its output looks as

(9)

where ,  and  denotes, correspondingly, activations, biases and weights related to the hid-
den layer. Since the weight matrices  and  are independent, they got different after autoencoder
training by the backpropagation algorithm. A way around this is to use the tied weights defined by formula:

(10)

Here we set  eliminating a lot of freedom degrees. Tied weights work faster and give more
accurate results in finding the global minimum of the cost function (1), as it shown in Fig. 12 for the auto-
encoder which compressed input to 64 nonlinear principal components.

In addition to using tied weights, we propose their normalized initialization such, as described below
in section 3.2, with small difference. A numerator is equals to one and a denominator is the square root of
the neurons number of the previous layer. It prevents from exploding or vanishing gradients problem.

( ) ( )( )2 2 2 1 1 1    ,f x b W b W x= σ + σ +

2σ ib ( )  1,2iW i =
1W 2W

( ) ( )( )2 2 1 1 1 1    .Tf x b W b W x= σ + σ +

2 1
TW W=

Fig. 11. Example of the autoencoder output (in the right) trained by backpropagation with regular weights.
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Fig. 12. Images from the FERET database (upper row) recovered with the autoencoder from 64 nonlinear principal com-
ponents and tied weights (lower row), (a) with Tanh activation; (b) with LReLU activation.
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3.1.5. Stochastic gradient descent with Adam
optimization. The common batch gradient
descent method used in backpropagation per-
forms computations over all training sample,
what is too long for large datasets and redun-
dant, since it recomputes gradients of similar
examples before each parameter update. In
contrast, stochastic gradient descent (SGD)
performs one update at a time for each ran-
domly chosen training example xi and its label.
It is much faster and, besides, SGD’s f luctua-
tion enables it to jump to new and potentially
better local minima. From another hand SGD
keeps overshooting the exact minimum of the
backpropagation loss function what compli-
cates convergence to it. One of ways to optimize
SGD and to dampen its oscillations is adding to
the current update vector “a momentum of
inertia”, as a fraction of the update vector of the
past time step.

We use Adaptive Moment Estimation (Adam) method for efficient stochastic optimization that only
requires first-order gradients [55]. Adam computes adaptive learning rates for each parameter and also
keeps an exponentially decaying average of past gradients, similar to momentum. An important property
of Adam’s update rule is its careful choice of step sizes.

Results of the applications of the tied weights and SGD Adam methods depicted in Fig. 13. Prefix
“Tied/Untied” means the type of network weights: tied or separate weights, respectively. “GD” is a gra-
dient descent abbreviation. As we can see in Fig. 13, Adam optimization method significantly reduces the
convergence time. Tied weights do not make a great benefit for speeding up the learning procedure and
regular separate weights behave even better, but, worth to note, that in spite of everything, the curve is still
stabilized as in the case of tying weights. The other motivation of using transposed representation of
encoder weights for the decoder is reducing the number of network parameters twice which is the crucial
property of weight tying.

Our experiments show us that untied version of autoencoder even doesn’t converge when using gradi-
ent descent optimization. At the start of training it stuck in local minima, and then the loss increases very
fast.

In our further work with shallow, deep and deep belief neural networks we also use SGD Adam opti-
mization.

3.2. Deep Neural Network

One of the main advantages of deep belief nets used in our work is that these networks do not suffer
from “vanishing and exploding gradients” problem. But some learning algorithms (in particular, unsuper-
vised learning algorithms such, as algorithms for training RBMs by approximate maximum likelihood) are
problematic in this respect because we cannot directly measure the quantity to be optimized (e.g. the like-
lihood) because it is intractable. On the other hand, the expected denoising reconstruction error is easy to
estimate (by just averaging the denoising error over a validation set, as in [56]). Furthermore, a training
time of deep belief nets is always too long. At the same time it is possible to apply another type of classifiers
which convergence is much faster, namely Deep Neural Networks (DNN) with the initialization per-
formed by normalized weights [22]:

(11)

where  is the uniform distribution in the interval  and the n is the size of the previous layer
(the number of  columns).
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Fig. 13. Decreasing of the loss function in time depending
on optimization method and type of weights.
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The DNN works much faster than DBN, because it avoids the pretraining procedure for RBM hidden
layers. For instance, it is about 28 seconds per training DBN epoch on MNIST dataset on Intel Core i3-
4005U versus 2 seconds for deep nets with two hidden layers.

3.3. Shallow Neural Network with One Hidden Layer

We use feed-forward perceptron with one hidden layer and sigmoid activations as shallow neural net-
work estimator. The input of the perceptron is an array of eigenvectors with dimension of 64, which is
received from the latent representation of input images of the autoencoder’s bottle-neck layer. All percep-
tron hyperparameters were optimized to obtain the maximum classification efficiency and remain
unchanged during all experiments.

The optimal number of hidden neurons was set to 80. The loss function used for training is the mean
value of cross-entropy errors. As the training minimizer, the SGD Adam method described in section
3.1.5 is used. Size of output layer corresponds to the number of learning classes (10 for MNIST and 40 for
FERET, respectively).

3.4. The First Test of Updated Neural Networks

After updating all three neural networks, – perceptron with one hidden layer, Deep Belief Network and
Deep Neural Network with parameters shown in Table 1 we accomplish the first preliminary classification
on both databases, – handwritten digits and faces. The obtained classification efficiencies are shown in
Table 2.

As one can see the classification results look well and the efficiency of the deep learning models is
already higher than of the perceptron with one hidden layer. However, as it is shown in the next section,
there are still more ways of optimizing hyperparameters to improve advantages of deep network models.

4. SELECTION OF OPTIMAL HYPERPARAMETERS FOR NETWORK MODELS

Firstly, we need to choose an optimal number of principal components for the best input data recov-
ering by our autoencoder. We suppose the upper boundary of the number of principal components as 250
to prevent the model from an extra growing complexity.

Table 1. Initial parameters of all classifiers

Parameter
Classifier

perceptron (1 hidden layer) deep belief network deep neural network

Learning rate 0.1 0.1 0.1
Batch size 64 64 32
Hidden units 80 80 80
Optimizer Adam Contrastive divergence Adagrad [57]
Loss function Cross-entropy Cross-entropy Cross-entropy
Dropout – 0 0
Pretrain epochs – 1 –
Learning rate pretrain – 0.1 –
Learning rate decays – 1.0 –
Gradient clipping – – 5.0

Table 2. Comparison of the different classifiers

Perceptron (1 hidden layer) Deep neural network Deep belief network

MNIST 0.7977 0.8713 0.8482
FERET 0.8750 0.9583 0.9416
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Fig. 14. Dependence of the accuracy on the number of neurons in the bottle-neck layer.
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Fig. 15. Dependence of the epoch’s number on the number of neurons in the bottle-neck layer.

Neurons number in the bottle-neck layer
50 100 150 200 250

E
po

ch
s

0

100

200

300

400

500

600

700

800
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4.1. Number of Neurons in Hidden Layers of Autoencoder
Then we calculate the dependence of the AE loss function for different numbers of neurons in the bot-

tle-neck layer. It is shown in Fig. 14. As one can see there, the acceptable number of the principal com-
ponents begins from 60 components.

The next we calculate how many epoch numbers needed to train the network with the different number
of principal components. In Fig. 15 it is shown that the epoch number inversely proportional to the num-
ber of bottle-neck neurons due to insufficient number of neurons for the input data reconstruction. The
curve stabilizes around 70 neurons.

Two previous tests show that the optimal number of principal components lies between 50 and 200. In
addition to the epoch number, we consider the time needed to train neural network, which also depends
of the number of neurons in the bottle-neck layer, as it shown in Fig. 16. Proceeding from both these
dependencies we find that the optimal value is around 70–80 neurons in the bottle-neck layer.

Our experiments with different numbers of principal components bring us, eventually, to the conclu-
sion that the good number is 64, because it ensures the classification efficiency on the level 95% and, as it
noted before, a greater number of neurons would increase the model complexity. From similar consider-
ations we found that the number of neurons in both mapping-demapping layers should not exceed 256.

Thus, the final architecture of the autoencoder consists of 5 layers: input and output layers with the
same dimensions (length of the input vector), mapping and demapping layers with 256 neurons per layer
and the bottle-neck layer with 64 neurons.

4.2. Cross Validation for Tuning Architecture of Both Deep Neural Networks
A good quality of deep architectures means they can model high-level abstractions in data that allows

obtain high prediction quality, although too deep neural net models can be easily overfitted, if wrong
parameters were chosen. Analogously, if the model is not complex enough, it may not be sufficiently pow-
erful to capture all of the useful information necessary to solve a problem. However, if the model is need-
lessly complex (especially if there is a limited amount of training data), it would suffer from overfitting.
There are known countermeasures to prevent overfitting in deep learning such as regularization by drop-
out technics [58] when on each weight update cycle randomly selected nodes are dropped-out with a given
probability (e.g. 20%). However we found that the cross validation approach is more preferable in our case
for tuning both deep belief and deep network architectures.

Grid search cross-validation ([59]) provides a rather simple and effective method for both model selec-
tion and performance evaluation, which is widely employed by the machine learning community. Under
k-fold cross-validation the data are randomly partitioned to form k disjoint subsets of approximately equal
size. In the ith fold of the cross-validation procedure, the ith subset is used to estimate the generalization
performance of a model trained on the remaining k−1 subsets. The average of the generalization perfor-

Fig. 17. Efficiency dependence on the number of hidden layers.
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mance observed over all k-folds provides an estimate (with a slightly pessimistic bias) of the generalization
performance of a model trained on the entire sample [60].

In our paper we apply a simple grid search cross-validation method for tuning model parameters.
According to [61] we split the training database in two parts: 80% as train set and another 20% as cross-
validation set. Then we divide cross-validation data into 3-fold batches, calculated the score during the fit
of an estimator on each fold and take an average score value. After fitting the estimator on a parameter
grid, we choose parameters to maximize the cross-validation score, for which the network classification
efficiency is selected.

For the beginning we need to choose the number of the hidden layers in our deep classifiers. Two
curves in Fig. 17 represent dependencies the network classification efficiency and the number of the hid-
den layers. The best choice from Fig. 17 is two hidden layers. Then we have to determine an optimal com-
bination of hidden neurons per layer.

Fig. 19. Images from the MNIST database recovered by the autoencoder with 64 nonlinear principal components;
(a) with Tanh activation; (b) with LReLU activation.
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Fig. 18. Efficiency distribution depends on the number of neurons in the hidden layers.
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The distribution of the efficiency dependencies on the number of neurons in the hidden layers is shown
in Fig. 18. On horizontal axes we can see the number of neurons in the first and second hidden layer, on
the vertical axis – the classification efficiency.

Since it is hard to judge on this plot, which combination of the hidden neurons is better, we brought
the best combinations and their scores to Table 3. As one can see in Table 3, two last combinations give us
the same scores, but 100 neurons in the second layer is apparently better than 180. Thus, the optimal num-
bers of the hidden neurons per 1st and 2d layers are 300 and 100 respectively.

The other hyperparameters were tuned using the grid search cross-validation (see [59]). The next
chapter presents the results of testing the final tuned models.

5. FINAL TEST OF UPDATED NEURAL NETWORKS
5.1. Feature Extraction by Autoencoder

The autoassociative network is used for testing, as the autoencoder with 5 layers: input and output lay-
ers with the same dimensions (length of the input vector), mapping and demapping layers with 256 neu-
rons per layer and the bottle-neck layer with 64 neurons. Examples of MNIST data recovering are shown
in Fig. 19.

As it shown above, the proposed autoassociative neural network works pretty well for the feature
extraction. It rescales data into the principal components vector with 64 dimensionalities and recovers
original images from these encoded representations with the following backpropagation loss function
measured as SSE (sum of squared errors):

• for FERET with Tanh activation – 79.43, with LReLU activation – 28.18;
• for MNIST with Tanh activation – 15777.3, with LReLU activation – 8573.5.

5.2. Classifiers
The images being rescaled to the 64-dimensional eigenvectors were classified then by three different

artificial neural networks:
⎯perceptron with one hidden layer;
⎯deep neural network with randomly initialized weights;
⎯deep belief network.

Fig. 20. Examples of incorrect predictions on the MNIST test set.

Answer – 0
Correct – 2

Answer – 7
Correct – 9

Answer – 3
Correct – 5

Answer – 0
Correct – 2

Answer – 7
Correct – 2

Answer – 9
Correct – 8

Table 3. 7 best combinations of the hidden neurons numbers

Neurons 1st layer Neurons 2nd layer Cross-validation average score

200 230 0.939286
250 300 0.939286
260 210 0.939286
300 160 0.939286
300 200 0.939286
300 100 0.942857
300 180 0.942857
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The architectures of these networks were specified above in section 4.
Table 4 contains the results of obtained efficiency for testing different classifiers with two datasets:
⎯MNIST handwritten digits dataset;
⎯FERET faces database.
The results look quite satisfactory. Deep learning techniques give the 100% classification efficiency on

the faces database and the 93–98 percent efficiency on the handwritten digits dataset. Although it is not a
problem for the human to distinguish various faces, the DBN can make better predictions in the case of
digits, even than the human can.

Examples of the incorrect predictions by the DBN classifier are shown in Fig. 20 to emphasize the spe-
cial difficulties of classifying handwritten digits even for the human.

6. AUTOENCODER APPLICATION FOR IMAGE DENOISING
Generally, real image examples are not so clean – they can have a lot of noise. We are going to test how

our autoencoder model will recover the input images with the different percent of noise imposed on them.

Fig. 21. Denoising autoencoder scheme.
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Fig. 22. Examples of the noisy images with different percentage of noise.
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Table 4. Comparison of the different estimators

Perceptron Deep neural network Deep belief network

MNIST 0.7977 0.9285 0.9839
FERET 0.8750 1.0000 1.0000
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We did not use any stacked autoencoders for denoising, as in [32] but just the autoencoder described in
section 3 above. A denoising procedure takes noisy data, as input, and outputs this data, where the noise
is removed. The scheme of denoising neural network is presented in Fig. 21.

A neural network has to be trained to clear images from the noise by minimizing the sum of square
errors between the output image, produced by feed forward noisy image through the network, and the
clear image that noisy image refers to. Eventually, such a denoising autoencoder network learns how to
clear images from noise.

Noise generation is a function that takes a non-corrupted image and corrupts randomly selected pixels
bounded by noise factor argument – the corruption dose. The corruptions are different for our data sets:
for FERET a corrupted pixel is set to zero, while for MNIST it is set to one. Examples of MNIST noisy
images sorted by percent of noise are shown in Fig. 22 (original images correspond to the noise level 0%).

To estimate how effective is denoising power of such a denoising autoencoder we have to apply some
classifier to see its efficiency on noisy data compressed by this autoencoder. However at this point we met
the question caused by the fact that the noise level of images to be classified is not known in advance. So
we have, first, to determine some optimal noise level (a noise factor value) to train a denoising autoen-
coder on images corrupted by such noise in order to use then this trained denoising autoencoder for com-
pressing images with unknown noise level. After the special study, when we looked over a denoising auto-
encoders with various noise levels (including zero, i.e. training on non-corrupted images) and evaluating
then the classification efficiency after applying the denoising autoencoder to noisy images, we choose 0.2
as the noise factor value. It should be noted that autoencoders trained by clear, non-corrupted data could
also recover noisy input, since they find during training nonlinear dependences between input and output
data bypassing the image corruption, but they yield 9–10% of classification efficiency to the denoising
autoencoder trained with 0.2 noise factor value. Comparative results of noisy images classification by
three different estimators are presented in Table 5. The highest efficiencies are marked out by bold-face
type in the table.

Our classifiers were trained on non-corrupted images. The denoising autoencoder was trained with
20% noise added to input images. Then the classifiers were tested on six datasets with noise levels in range
from 0 to 50% compressed previously by the denoising autoencoder.

As we can see from Table 5, the classification efficiency keeps well even on the data with of noise. Deep
Belief Network performs better classification results again, but with noise increasing it yields to the deep neural
network. Both deep classifier efficiencies are notably higher than for the perceptron with one hidden layer.

7. SPEED UP DEEP LEARNING BY GPU AND CLOUD SERVICES
7.1. Evaluation of Deep Learning Libraries

Over the past decade deep learning evolution has experienced the great changes. Through growing
interest from science, engineering and business this part of machine intelligence endured a lot of exten-

30% 

Table 5. Comparison of classifying efficiency for noisy images in the case of applying LReLU activations and MinMax
normalization of input

FERET MNIST

noise (%) perceptron deep NN deep belief perceptron deep NN deep belief

0 0.9166 0.9867 1.0000 0.7449 0.9182 0.9861
10 0.9083 0.9867 0.9833 0.6901 0.8779 0.9644
20 0.9000 0.9750 0.9666 0.6115 0.7832 0.8794
30 0.8750 0.9583 0.9583 0.5001 0.6443 0.6027
40 0.8500 0.9667 0.9499 0.4100 0.5202 0.3863
50 0.8000 0.9583 0.9333 0.3036 0.3973 0.2283

Table 6 [62]. Comparison of main properties of deep learning toolkits
Frameworks Base language Multi-GPU support

TensorFlow Python, C++, Java, Go Yes
Torch LuaJIT Yes
Theano Python By default, no
Caffe C++ Yes
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sions and explorations. Now the vital demand of building special frameworks becomes a real challenge for
software developers and great IT-giants like Google, Microsoft and IBM. In particular, Google released
the beta version of its own framework named TensorFlow.

The current major deep learning frameworks: Theano, TensorFlow, Caffe and Torch are examined
here and compared across various features, such as native language of framework, multi-GPU support,
training time and aspects of their usability. In the Table 6 from [62] we can see a brief comparison of some
properties of these deep learning toolkits.

TensorFlow is an open source software library for numerical computation using data f low graphs [63].
Nodes in the graph represent mathematical operations, while the graph edges represent the multidimen-
sional data arrays (tensors) communicated between them. The f lexible architecture allows one to deploy
computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. Ten-
sorFlow was originally developed by researchers and engineers working on the Google Brain Team within
Google’s Machine Intelligence research organization for the purposes of conducting machine learning
and deep neural networks research, but the system is general enough to be applicable in a wide variety of
other domains as well.

Torch is a scientific computing framework with the wide support for machine learning algorithms that
puts GPUs first [64]. It is easy to use and efficient, thanks to an easy and fast scripting language, LuaJIT
(it is a Just-In-Time Compiler (JIT) for the Lua programming language), and an underlying C/CUDA
implementation. At the heart of Torch are the popular neural networks and optimization libraries which
are simple to use, while having maximum flexibility in implementing complex neural network topologies.
You can build arbitrary graphs of neural networks, and parallelize them over CPUs and GPUs in an effi-
cient manner.

Theano is a Python library that lets you to define, optimize, and evaluate mathematical expressions,
especially ones with multi-dimensional arrays (numpy.ndarray). Using Theano it is possible to attain
speeds rivaling hand-crafted C implementations for problems involving large amounts of data. It can also
surpass C on a CPU by many orders of magnitude by taking advantage of recent GPUs. Theano combines
aspects of a computer algebra system (CAS) with aspects of an optimizing compiler. It can also generate
customized C code for many mathematical operations [65].

Caffe is a deep learning framework made with expression, speed, and modularity in mind [66]. It is
developed by the Berkeley Vision and Learning Center and by community contributors. Expressive archi-
tecture encourages application and innovation. Models and optimization are defined by configuration
without hard-coding. One can switch between CPU and GPU by setting a single f lag to train on a GPU
machine then deploy to commodity clusters or mobile devices [66].

As we can see, TensorFlow supports a great variety of programming languages, much more than other
frameworks. It should be mentioned, that Caffe has an ability to run in Python by its pretrained models.
The syntax of C++ is rather complicated in compared with Python. This also applies to Lua language.

The comparison of these frameworks time consuming is shown in Table 8 from [67] where presented
implementation results for different CNNs. The best time marked in bold.

Machine: 6-core Intel Core i7-5930K CPU @ 3. 50GHz + NVIDIA Titan X + Ubuntu 14.04 x86_64.
Table 7 above shows that TensorFlow performs better in benchmarks. Google’s library twice faster than

Torch or even C++ based Caffe.
There is one more test [72], where the running time of various recurrent neural networks on different

deep-learning libraries are compared. Table 9 illustrates the speed of feeding training samples in second
trough the network: forward and backward. The best pairs of values marked in bold.

Model: A single LSTM layer
⎯nn.SeqLSTM for Torch (updated version as of Nov 18, 2016);
⎯tf.nn.rnn_cell.LSTMCell for TensorFlow 0.11;
⎯scan from Theano 0.8.2.
Machine: Pascal Titan X + Cuda 8 with cudNN 5.1 drivers
As it seen from Table 8, TensorFlow shows the best results in benchmarking.
Thus, we can say, that TensorFlow is the fastest deep learning tool.
We select Python as a programming language for our research because it is easy to understand, sup-

ports multiple systems and platforms, object oriented programming-driven, has a plethora of frameworks
and modules and has a large number of resources available for it.

With such a consideration we compare how easy to program in two deep learning toolkits, TensorFlow
and Theano. They both are f lexible and support major types of layers, activation functions and add-on
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Table 7. Convolution networks benchmarks

AlexNet [68] – Input 128 × 3 × 224 × 224

library class time (ms) forward (ms) backward (ms)

TensorFlow conv2d 81 26 55

Torch-7 SpatialConvolutionMM 342 132 210

Caffe ConvolutionLayer 324 121 203

Overfeat [69] – Input 128 × 3 × 231 × 231

TensorFlow conv2d 279 90 189

Torch-7 SpatialConvolutionMM 878 379 499

Caffe ConvolutionLayer 823 355 468

OxfordNet [70] – Input 64 × 3 × 224 × 224

TensorFlow conv2d 540 158 382

Torch-7 SpatialConvolutionMM 1105 350 755

Caffe ConvolutionLayer 1068 323 745

GoogleNet V1 [71] – Input 128 × 3 × 224 × 224

TensorFlow conv2d 445 135 310

CuDNN[R4]-fp16 (Torch) cudnn.SpatialConvolution 462 112 349

Caffe ConvolutionLayer 1935 786 1148

Table 8. Recurrent networks benchmarks

Library Sequence length Batch size Hidden layer size Forward samples/sec Forward + backward 
samples/sec

Torch 30 32 128 22110 4849

TensorFlow 30 32 128 2778 1410

Theano 30 32 128 15462 5440

Torch 30 32 512 6722 1582

TensorFlow 30 32 512 2155 1285

Theano 30 32 512 7127 1874

Torch 30 128 128 74897 15131

TensorFlow 30 128 128 8656 5411

Theano 30 128 128 53953 14491

Torch 60 32 128 11126 2364

TensorFlow 60 32 128 1353 879

Theano 60 32 128 5538 3092

Torch 60 32 512 3344 785

TensorFlow 60 32 512 1272 811

Theano 60 32 512 3951 1060

Torch 60 128 1024 5248 1543

TensorFlow 60 128 1024 2695 1423

Theano 60 128 1024 4366 1409
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libraries. So we can compare how many lines of code you should write to obtain the same things in each
of those libraries [73].

Variables initialization:
1. # TensorFlow
2. b = tf.Variable(tf.zeros([n_out]))
3. W = tf.Variable(tf.random_uniform([n_in, n_out], –1.0, 1.0))
4. y = tf.matmul(W, x_data) + b
5.
6. # Theano
7. X = T.matrix()
8. Y = T.vector()
9. b = theano.shared(numpy.random.uniform(-1, 1), name="b")
10. W = theano.shared(numpy.random.uniform(1.0, 1.0, (n_in, n_out)),

name="W")
11. y = W.dot(X) + b
TensorFlow doesn’t require any special treatment of the x and y variables: they just exist in their native

forms.
Define loss function and optimizer:
1. # Tensorflow
2. loss = tf.reduce_mean(tf.square(y - y_data)) # (1)
3. optimizer = tf.train.GradientDescentOptimizer(0.5) # (2)
4. train = optimizer.minimize(loss) # (3)
5. 
6. # Theano
7. cost = T.mean(T.sqr(y - Y)) # (1)
8. gradientW = T.grad(cost=cost, wrt=W) # (2)
9. gradientB = T.grad(cost=cost, wrt=b) # (2)
10. updates = [[W, W - gradientW * 0.5], [b, b - gradientB * 0.5]] # (2)
11. train = theano.function(inputs=[X, Y], outputs=cost,

updates=updates, allow_input_downcast=True) #(3)
Lines marked as (2, 7) specifying the loss function, in this case mean squared error. The (3, 8-10)

marker denotes the gradients definition. TensorFlow gives access to lots of good optimizers out of the box
(including gradient descent and Adadelta). Theano makes one to do all the hard work. This is both a good
and bad thing: it offers ultimate control, but also affects code comprehension and increases verification
effort. Lines with mention #(3) are the training function initialization.

And to train these models we should build a graph and start epochs. The code below does this.
Building graph and training:
1. # TensorFlow
2. init = tf.initialize_all_variables()
3.
4. sess = tf.Session()
5. sess.run(init)
6. for step in xrange(0, 201):
7. sess.run(train)
8.
9. # Theano
10. for i in xrange(0, 201):
11. train(x_data, y_data)
12. print W.get_value(), b.get_value()
Theano’s training is intuitive, but TensorFlow’s philosophy of encapsulating the graph execution in a

Session object does feel conceptually clearer than Theano’s. TensorFlow protects the user from writing
plenty of code defining input tensors, updating gradients and its code is more compact then Theano’s one.
In addition, Google deep learning library has many debugging tools and can visualize computation graph
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with a suite of visualization tools called TensorBoard [75]. You can use TensorBoard to visualize your Ten-
sorFlow graph, plot quantitative metrics about the execution of your graph, and show additional data like
images that pass through it.

Firstly, before running tensorboard you should save needful variables, update logs and the graph ses-
sion. For example, to save how the loss function is decreased during training, we need add summary scalar
and give it a name:

1. # %% cost function measures
pixel-wise difference

2. with tf.name_scope('cost'):

3. cost = tf.reduce_-
sum(tf.square(y - corr))

4. tf.summary.scalar('Loss_
func-tion', cost)

Then we should create session and merge all
summaries in one variable. The code below does
it:

1. # We create a session to use
the graph

2. sess = tf.Session()

3. 

4. # Merge all summaries

5. merged = tf.sum-
mary.merge_all()

6.

7. # Create a log writer

8. writer = tf.summary.File-
Writer('./tmp/logs', sess.graph)

9.

10. # Initialize all variables
and run session

11. sess.run(tf.global_vari-
ables_initializer())

Fig. 23. TensorBoard visualization of descending the autoencoder loss function.
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Eventually we should update our summary variable for each training step by adding new value in train-
ing loop. Then after training close the writer.

1. for i in range(epochs_n):

2. for batch_i in range(faces['train_data'].shape[0] // batch_size):

3. batch_xs       = faces['train_data'][batch_i*batch_-
size:batch_i*batch_size+batch_size]

4. _, summary = sess.run([optimizer, merged], feed_dict={ae['x']:
batch_xs, ae['corr']:batch_xs})

5. writer.add_summary(summary, i)

6.

7. writer.close()

Finally, to visualize the loss function decreasing in the training process, type in terminal (linux) or
command line (windows):

1. tensorboard --logdir=./tmp/logs

Then the terminal will print the message with the address, on which it is necessary to navigate to open
TensorBoard starting page. Click the menu item “SCALARS” to see all scalar plot. As an example, of the
loss function descending for our autoencoder is shown in Fig. 23. If we put the cursor on a certain point
in the graph, we will see on the bottom left details about this point: point value, current training step, time-
stamp and how much time passed before this point occurring.

If we want to view the graph built with all nodes (in our example it is the autoassociative neural network
graph) we must click on the menu button “GRAPHS” and then we will see the main graph and its auxil-
iary nodes (Fig. 24). User may open interesting node and also download a png image of graph.

Thus, TensorFlow has many advantages: it supports two main operation systems – Linux and Win-
dows; based on great variety of programming languages such as Python, C++, Java, Go; it is very fast,
twice faster than the other deep learning toolkits; it is more f lexible because of its high-level API (version
1.0); it can create a visualization of session graph and training process; it has many debugging tools and
you do not need to write long lines of code.

Fig. 25. Images produced per second with different devices. Dual CPU System: Dual Intel E5-2699 v4 @ 3.6 GHz, 64 batch
size, cuDNN v5.1.

Images per second

6.1

74.6

137.8

189.0

0 10 50 100 150 200

Dual CPU
4X Tesla K80
4X Tesla M40
4X Tesla P100

Fig. 26. TensorFlow Inception v3 Training Scalable Performance on multi-GPU node.
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It is the reason to use TensorFlow in our work. All neural network models, except Deep Belief was
coded with Google library. Deep Belief Network was created with the help of Nolearn package which is a
high-level superstructure of Theano, because building Deep Belief Network from scratch is unnecessary
slow, while Nolearn has a prepared function for it.

7.2. Speed up Training Process with GPU Graphics Cards and Cloud Service
Deep learning means deep neural networks with many layers and thousands or even millions of neu-

rons. With growing interest to deep techniques, the model’s capacity is increasing extremely fast and go
deeper and deeper. For instance, in networks for natural language processing with their gate system even
one neuron includes 5 activations and 5 gradients respectively. To train such a giant networks, hundreds
of hours could be needed on ordinary computer. When in our work on the notebook Dell Vostro 5480, we
train deep belief network, its evolution is rather complicated and one minibatch training epoch with pre-
training by contrastive divergence takes 28 seconds on the MNIST dataset. Therefore, there is a great need
in speeding up network evolution by switching from CPU to GPU computations.

TensorFlow and Theano frameworks operate with large matrix multiplications and can do calculations
in parallel from box. You only need to install required drivers and define special f lags. In Theano there is
a THEANO_FLAGS variable in which you can specify device as “gpu0” and floatX as “float32” it means
that system will run program with GPU support and perform float point computations. TensorFlow has
two repositories with regular CPU version of library and GPU. To install GPU version, user must add
“gpu” postfix after the name of package, like in this example:

1. pip install -–upgrade tensorflow-gpu
To switch back from GPU to CPU mode, type the code below and insert in it your computation part.
1. with tf.device('/cpu:0'):
2. # your computations.
Figure 25 illustrates how many images can be processed per second with different hardware. As bench-

mark Nvidia’s test [74] was used on Inception v3 model. The graphs below shows the expected system per-
formances with a CPU and 1, 2, and 4 Tesla GPUs per node.

It is clear that GPU performs faster for one-two orders of magnitude. Worth to note, that TensorFlow
supports multi-GPU calculations. The plot in Fig. 26 shows the TensorFlow training scalable perfor-
mance on multi-GPU node.

The application of Tensorflow and other libraries was well facilitated by a multicore computational sys-
tem and multiprocessor graphics cards (GPUs) via the cloud service facilities provided by heterogeneous
computing cluster HybriLIT [76] of the Joint Institute for Nuclear Research in Dubna, Russia.

HybriLIT cluster has seven computational nodes, named Supermicro SuperBlade Chassis, with GPU
units: Nvidia Tesla K40, K80 and K20X. Also, JINRs cluster includes Dell PowerEdge block at the dis-
posal of which there are four another K80s [76]. Besides, today the system obtains a new hardware of
Nvidia Tesla M60 model.

For our experiments we used a virtual machine on HybriLIT cloud with Ubuntu 16.04 and single M60
graphic card as hardware for multiprocessing computations. Experiments showed a significant training
speed boosting. Our virtual machine with Tesla M60 outperforms the dual-CPU (Intel Core i3-4500U)
in speed more than 6 times. For comparison, one epoch of fitting DAEN with 3 hidden layers and
LeakyReLU as activation on MNIST data with batch size equals to 64 resolves only 3 seconds using M60
GPU-card versus 20 seconds with dual-CPU Core i3-4500U.

7. CONCLUSIONS
In our work, we propose a deep learning model for the image classification, which consists of two neu-

ral networks: an autoencoder for preliminary input compression and an estimator for classifying images of
two famous benchmark data sets MNIST and FERET.

A comparative study of three neural classifiers: a perceptron with one hidden layer, DBN and DNN
was accomplished on images of both data sets being previously compressed by the autoencoder. Compar-
ison of investigated estimators shows that DBN provides the highest classification efficiency, but DNN
accomplishes faster training time having competitive efficiency. Both, DBN and DNN perform much
better than perceptron with one hidden layer.

It is worth to note, that the main efforts to deal with deep learning networks were spent to quite a pains-
taking work for optimizing structures of those networks and, their components, as activation functions,
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weights, as well as the procedures of minimizing their loss function to improve their performances. So, we
have to make the special study to find optimal numbers of layers and hidden neurons, to apply tied weights
and SGD Adam method, to choose the most suitable activation functions and weight normalization in
order to improve performance of all used neural nets and speed up their learning time. Additionally we
observe such the remarkable feature of deep autoencoders as their ability for denoising images after being
trained on an image set corrupted in a special way. Denoising results of such autoencoder classification
efficiency on FERET images are really striking: images corrupted with 50 percent of noise were classified
with efficiency greater than 90 percent.

In our study we speed up significantly our deep network calculations by using Tensorflow library which
realization was well facilitated via a multicore computational system and multiprocessor graphics cards.
Our access to such a system was provided by the cloud service facilities at the JINR heterogeneous com-
puting cluster HybriLIT.
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